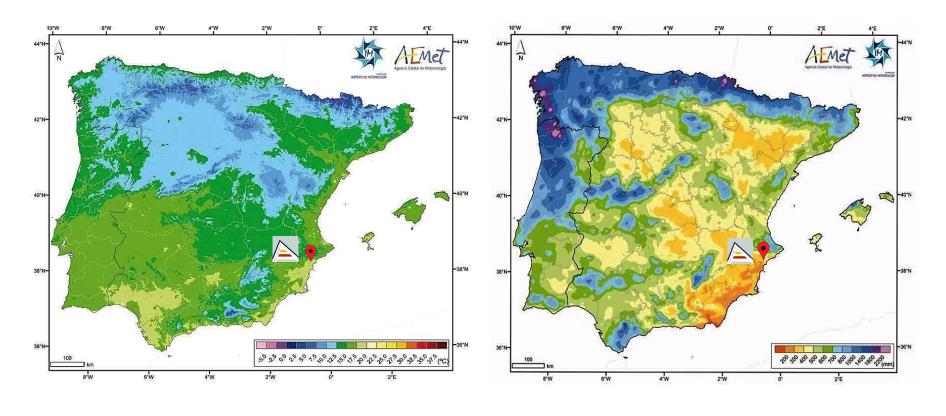


Conference on Management of Water in the Mediterranean and on Renewable Energies

Tuesday 18 October 2016 (8.30-18.00) - Valencia (Spain)

Planta Ósmosis inversa aguas salobres, de la Universidad de Alicante. Perspectivas en la Vega Baja del Segura

Daniel Prats Rico, catedrático de Ingeniería Química Director de Proyectos y Desarrollo del IUACA Universidad de Alicante


University of Alicante

Universitat d'Alacant Universidad de Alicante

- It was created in 1979
- 40 degrees and 126 post graduate programs
- 32.000 students
- 2.100 teachers
- 1.700 administration and services staff

Location in semidesert climate

Average temperature 18 °C

Average precipitations 300-350 mm/año


Source:: Iberian Climate Atlas. Agencia Estatal de Meteorología de España (AEMET)

University of Alicante was established in pavilions of a military camp which was created so to protect an ancient military airfield (aerodrome Rabasa)

Current image of the campus, Google Maps

505.324 m² of green and parckins and 102.644 m² of constructed area

Spain experienced a major drought between 1990-1995, with great impact in the Southeast. Consequences: drinking water restrictions

Lunes, 26 de agosto, 1996

BENIDORM - LA MARINA

Los alojamientos adquieren cubas de 10.000 litros a 5.000 pesetas para mantener llenos sus aljibes

Water supplied in tank truck was sold at 4,7 €/m³ (current prices)

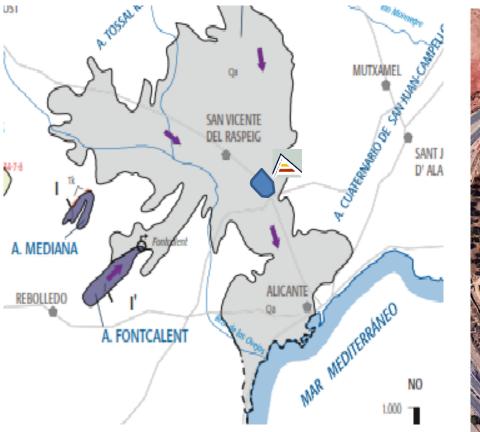
Hoteles de Benidorm compran agua de pozos privados para asegurar el suministro al cliente

Numerosos hoteles de Benidorm Ilevan todo el verano comprando agua procedente de pozos privados para mantener Ilev nos sus aljibes y garantizar el suministro a sus clientes. La grave sequía que asola el Le-

vante español y ha provocado cortes en el suministro de ocho horas diarias en Benidorm, ha obligado a las empresas a adoptar esta medida para asegurar el agua de forma permanente. El agua adquirida procede de sen-

dos pozos de propiedad privada situados en El Albir (Alfaz del Pi) y se vende al precio de 0,5 pesetas el litro. En los días de mayor afluencia turística, algunos hoteles han recibido hasta 180.000 litros diarios.

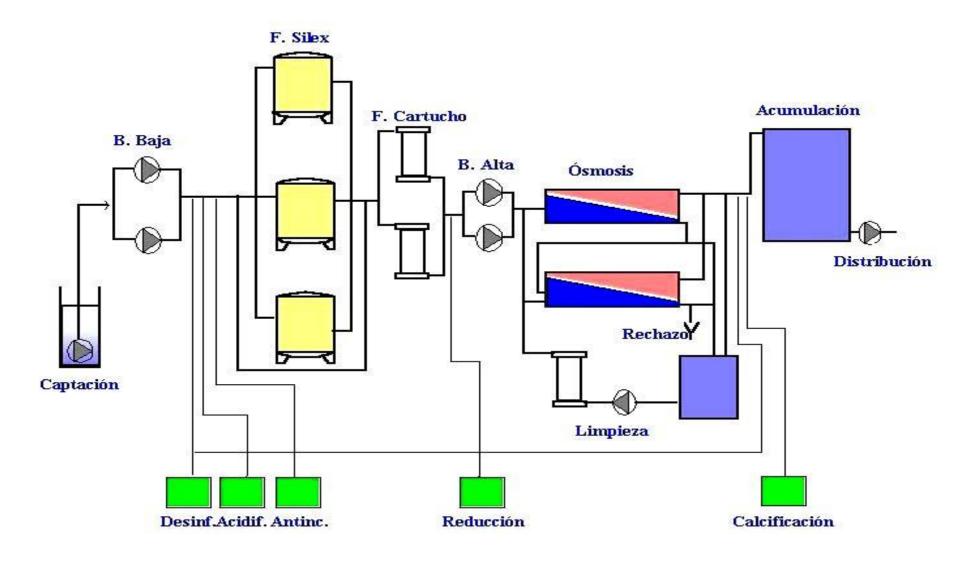
J. FAURÓ


La falta de agua se ha convertido en un negocio. «Poco lucrativo», según fuentes próximas a la empresa que se está encargando del suministro. Cada día, numerosos hoteles de Benidorm encargan agua a una empresa local para llenar los aljibes y asegurarse de que sus clientes podrán darse una ducha al llegar de la playa pese a las ocho horas de restricciones nocturnas que padece la ciudad.

Varios propietarios de hoteles han confirmado que las cubas de la empresa Orozco suministran agua a sus establecimientos de forma casi diaria. Fuentes cercanas a esta empresa informaron, por su parte, de que el agua -potable, subrayaron- que llega a los hoteles «está contribuyendo a salvar la temporada».

Transportes Orozco es la empresa encargada de abastecer a las empresas hoteleras. Camiones de esta firma acuden cada día a unos terrenos privados del Camino Viejo de Altea, en El Albir, para cargar cubas con una capacidad de 10.000 litros. El hotel paga cada cuba a 5.000 pesetas, indicaron las mismas fuentes. «A ese precio, prácticamente estamos regalando el agua. Que conste que no

Possible solution for campus and its great water needs: Desalination of brackish water



Aquifer: Quaternary San Vicente Permeable surface: 72,1 km² inputs water volume: 3,85 hm³ Underground drain to the sea: 2,65 hm³

Source: Atlas Hidrogeológico de la Provincia de Alicante Instituto Geológico y Minero de España. Diputación de Alicante Water was found at shallow depth (\sim 12-14 m) with high salinity (conductivity 5.500 to 6.500 µS/cm), which prevents its direct use (even as irrigation water)

Parameter	Parameter value		
рН	7,0		
Ca ²⁺ (mg/L)	350		
Mg ²⁺ (mg/L)	190		
Na ⁺ (mg/L)	900		
K ⁺ (mg/L)	16		
HCO ₃ ⁻ (mg/L)	340		
SO ₄ ²⁻ (mg/L)	1.600		
Cl⁻ (mg/L)	1.125		
NO ₃ ⁻ (mg/L)	150		
SiO ₂ (mg/L)	17,5		

Diagram of the RO plant, built by the company SADYT

Chemical pre-treatment and filtration with silex

Microfiltration cartridge and high pressure pumps

Pressure tubes, 3 in first stage and 2 in second stage

Building where the plant is located

The installation cost of the plant was 360.000 €

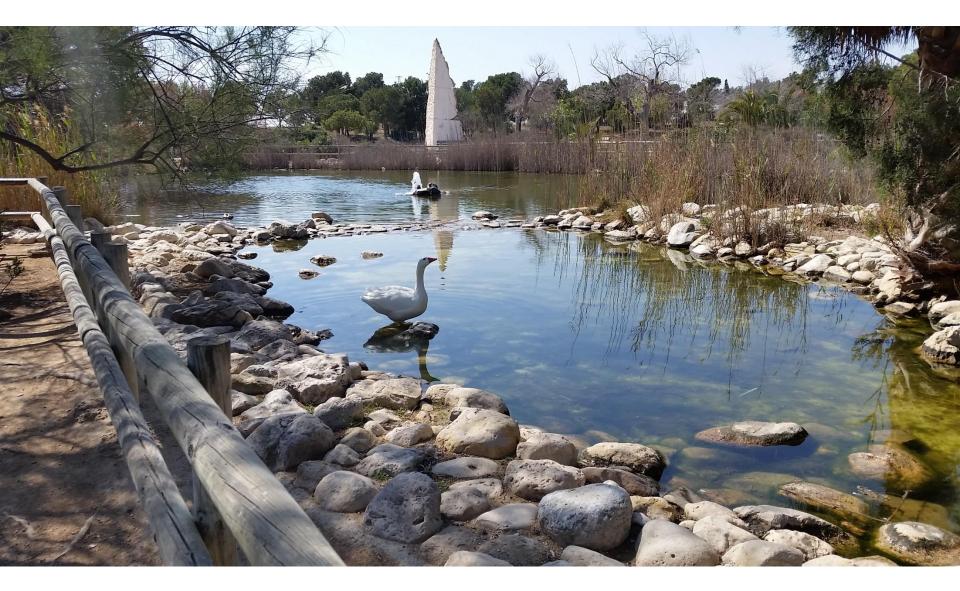
On June 14, 1996 started up the desalination plant Tastings of water the day of the inauguration

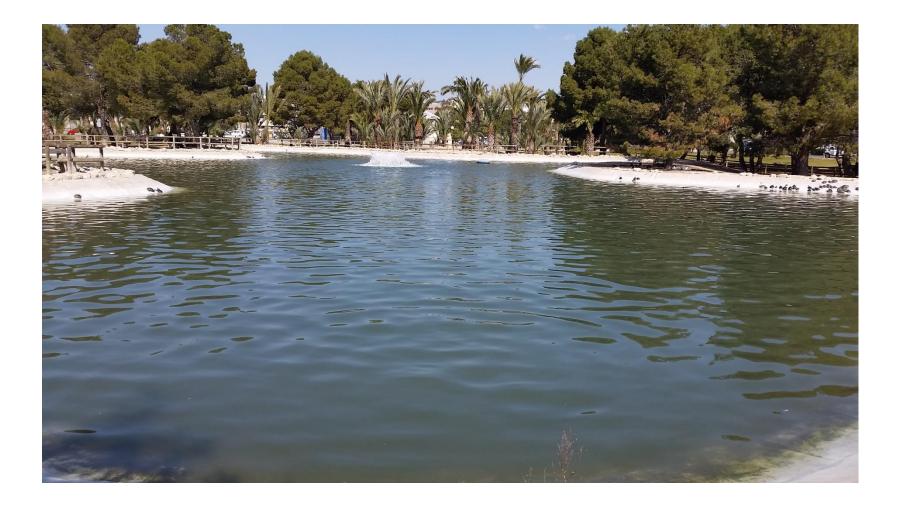
La Universidad ahorrará 9 millones anuales gracias a su potabilizadora

S. G. P • ALICANTE

Alrededor de nueve millones de pesetas es la cantidad que espera ahorrar la universidad de Alicante anualmente con la puesta en marcha de su propia potabilizadora, según informa Daniel Prats, el director de los Servicios Técnicos de la Universidad de Alicante y subdirector del Instituto del Agua y de las Ciencias Ambientales.

La potabilizadora del campus, que se inauguró ayer, ha contado con un presupuesto de 60 millones de pesetas para su construcción, que se ha realizado en un tiempo record de tan sólo seis meses. El acuífero de San Vicente es la fuente que suministrará desde ahora de agua a la universidad alicantina, cuyo campus consume diariamente 400 metros cúbicos. El agua del acuífero es tratado para hacerla potable mediante la osmósis inversa, de manera que cumpla todos los requisitos establecidos por los niveles guía de calidad óptima exigidos por la legislación vigente. Este proyecto surgió hace cinco años gracias a la iniciativa del entonces rector, Ramón Martín Mateo, y ha sido recogido con interés por el actual, Andrés Pedreño.

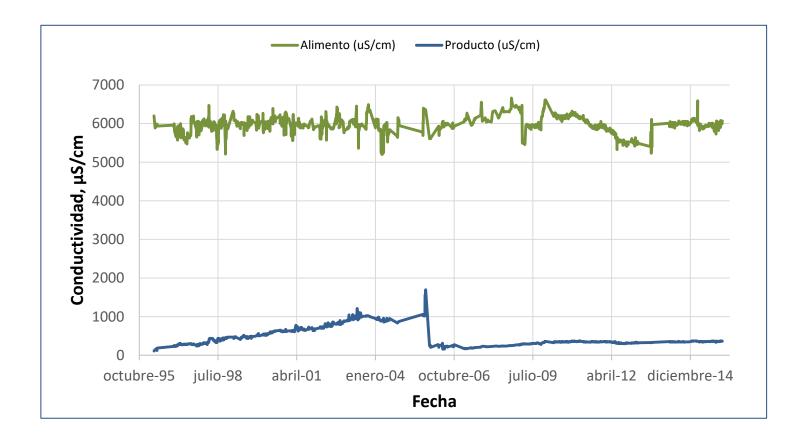

Daniel Prats informa que al no contar de momento con planta depuradora, el campus no es todavía capaz de tratar el agua residual para convertirla en regadío, de la que se consumen entre 200 y 400 metros cúbicos todos los días. Cuando el campus disponga de


El rector brinda con agua por la nueva potabilizadora./ELISA RUIZ

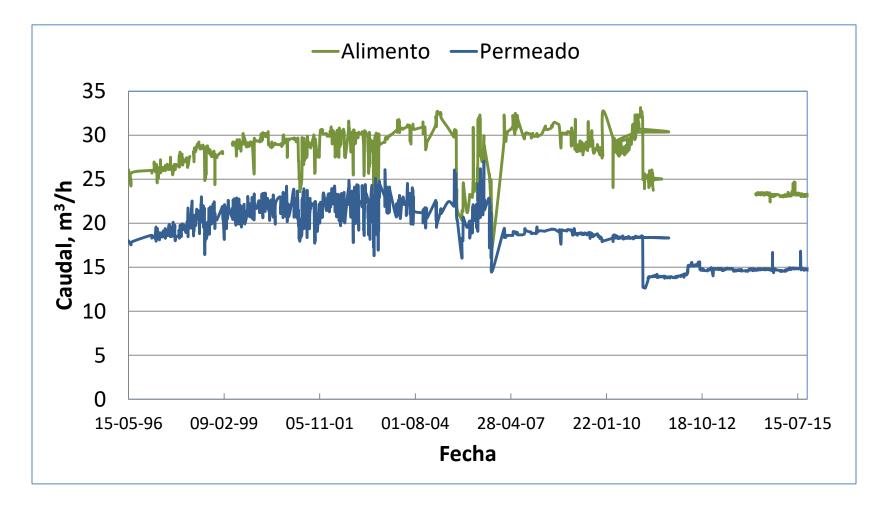
depuradora-todavía no hay plazos-se convertirá en la primera Universidad del mundo que se autoabastezca de agua. Prats aseguró, además, que tienen en fase de realización un proyecto para buscar formas alternativas de energía. La Universidad está pendiente de los permisos pertinentes de Sanidad para suministrar al campus su propia agua. Daniel Prats anuncia que muy pronto se patentará la marca 'Font Campus' y que es incluso posible que se embotelle.

Laguna mixing desalinated water with brackish water

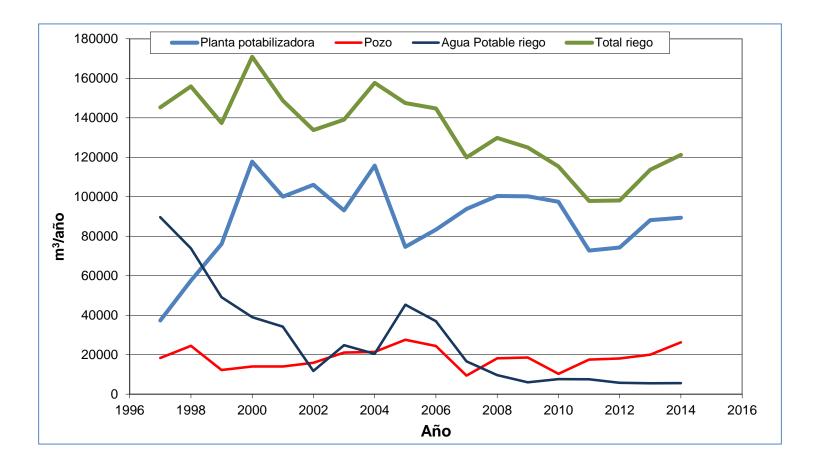
Laguna for irrigation water regulation



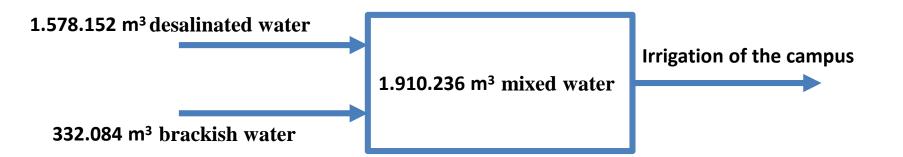
Evolution of the piezometric level of the aquifer


The groundwater level is not conditioned by the extraction of water for the plant. No overexploitation of the aquifer

Input and permeate conductivity

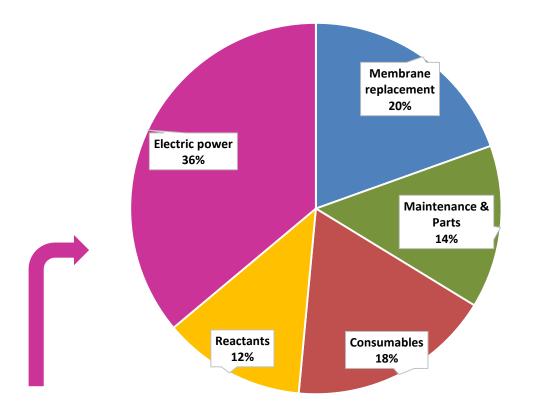

In 2006, after 10 years of operation of the plant, we made the first exchange of the membranes. Currently, no substitutions are expected immediately

Input and permeate flow rates



From started up to February 2011 the conversion was 71% (72% design) From that date to today it became 63%

Flows used in irrigation


Water production in the period 1997-2014

Production costs and savings from replacing drinking water

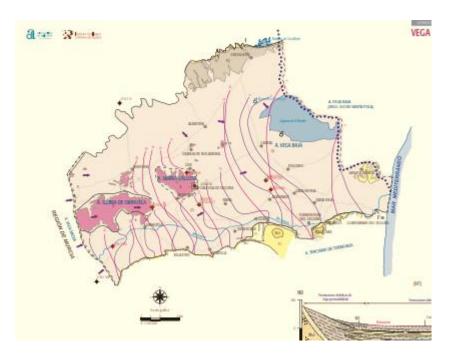

Period 1997-2014	Production (m3)	Operating cost (staff not included) (€)	Unit cost (staff not included) (€/ m3)	Cost in the case of using drinking water (€)	Savings (€)
Desalinated water	1.578.152	311.487	0,20	2.474.232	1.979.929
Brackish water	332.084	6.689	0,02	518.251	511.562
Mixed water	1.910.236	318.175	0,17	3.003.060	2.684.884

Typical water cost distribution for desalinated water (staff not included)

Overall electric power consumption for mixed water: 1 kWh/m³ campus o brackish

Successful project to irrigate the campus during 20 years with brackish water desalinated

Would it be possible to use, in this case, photovoltaic energy?


Quality water suitable for irrigation campus

Power consumption 1 kWh/m³

Unit cost (staff not included) 0,17 (€/m³)

Experience can be exportable for agricultural areas with brackish water availability

Vega Baja del Segura

Aquifer: Vega Baja del Segura Permeable surface: 748,6 km² inputs water volume: 73,0 hm³ Underground drain to the sea: 7,0 hm³

High salinity in many areas prevents water direct use

Source: Atlas Hidrogeológico de la Provincia de Alicante Instituto Geológico y Minero de España. Diputación de Alicante

Approximate calculation of installation to supply photovoltaic power for desalination plant similar to UA

Mixture water production 400 m³/day, equivalent to 146.000 m³/year

With this water could be irrigate 30 ha (5.000 m³ per ha each year)

Electrical energy required 1 kWh /m³ produced, equivalent to 146 MWh /year

Irradiance in the area > 5 kWh/m².day

The power required for the PV plant would be approximately 96 kWp

The surface of photovoltaic panels required is approximately 700 m²

The surface of field required is approximately 1.600 m^{2,}, equivalent to 0,5% of irrigated field

Conclusions

Successful project to irrigate the campus during 20 years with brackish water desalination

Electric power consumption is very low, 1 kWh/m³, and could be obtained using PV

The production of a similar desalination plant can supply irrigation water to a field of 30 hectares

The surface of field required for the PV installation would be equivalent to 0,5% of the irrigated field

Thank you for your attention

